Sparser Johnson-Lindenstrauss Transforms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparser Johnson-Lindenstrauss Transform

We give a Johnson-Lindenstrauss transform with column sparsity s = Θ(ε−1 log(1/δ)) into optimal dimension k = O(ε−2 log(1/δ)) to achieve distortion 1±ε with success probability 1−δ. This is the first distribution to provide an asymptotic improvement over the Θ(k) sparsity bound for all values of ε, δ. Previous work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a distribution with s = Õ(ε−1 log(1/δ...

متن کامل

On Using Toeplitz and Circulant Matrices for Johnson-Lindenstrauss Transforms

The Johnson-Lindenstrauss lemma is one of the corner stone results in dimensionality reduction. It says that given N , for any set of N vectors X ⊂ Rn, there exists a mapping f : X → Rm such that f(X) preserves all pairwise distances between vectors in X to within (1 ± ε) if m = O(ε lgN). Much effort has gone into developing fast embedding algorithms, with the Fast JohnsonLindenstrauss transfor...

متن کامل

Johnson-Lindenstrauss notes

PrA∼D [∣∣‖Ax‖22 − 1∣∣ > ε] < δ. Lemma 2 implies Lemma 1, since we can set δ = 1/n2 then apply a union bound on the vectors (xi − xj)/‖xi − xj‖2 for all i < j. The first proof of Lemma 2 was given by [15]. Since then, several proofs have been given where D can be taken as a distribution over matrices with independent Gaussian or Bernoulli entries, or even more generally, Ω(log(1/δ))-wise indepen...

متن کامل

The Johnson-Lindenstrauss Lemma

Definition 1.1 Let N(0, 1) denote the one dimensional normal distribution. This distribution has density n(x) = e−x 2/2/ √ 2π. LetNd(0, 1) denote the d-dimensional Gaussian distribution, induced by picking each coordinate independently from the standard normal distribution N(0, 1). Let Exp(λ) denote the exponential distribution, with parameter λ. The density function of the exponential distribu...

متن کامل

10 : The Johnson - Lindenstrauss Lemma ∗

In this chapter, we will prove that given a set P of n points in IR, one can reduce the dimension of the points to k = O(ε−2 log n) and distances are 1 ± ε reserved. Surprisingly, this reduction is done by randomly picking a subspace of k dimensions and projecting the points into this random subspace. One way of thinking about this result is that we are “compressing” the input of size nd (i.e.,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2014

ISSN: 0004-5411,1557-735X

DOI: 10.1145/2559902